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‘to"Spatial Kinematies

Any rigid body motion can be broken
down into two parts:

Spatial Kinematics

m Any rigid body motion can be broken
down into two parts:
— A rotation about some axis




Introduetion to "Spatial Kinematics

m Any rigid body motion can be broken
down into two parts:
— A rotation about some axis
— A translation along the axis

We’ve been screwed!

Introduction to Spatial Kinematics

m First we will study the rotation and
develop the “Finite Rotation Tensor”




m Suppose the axis is specified by a unit
vector U

ns About a Known
x1s of Rotation

m Suppose the axis is specified by a unit vector U
GEER U = ui+ u,j+ uk




ns About a Known

is of'Rotation

m The convention is that
the coordinate system
is right-handed




s About a Known
AXxis of Rotation

m The rotation angle about u is ¢

ns About a Known
XIS of Rotation

m Suppose the
axis of
rotation
passes
through the
origin




s About a Known
AXis of Rotation
m Suppose we

have a
particle P

ns About a Known
XIS of Rotation

m Suppose we
have a patrticle
P

m /n jts starting
position it is
located by the
vector r




ons About a Known
AXxis of Rotation
m /n its ending
position it is
located by
the vector r’

ns About a Known
IS of Rotation

m /n its ending
position it is
located by
the vector r

m [he rotation
angle was ¢

J




Xxis of Rotation

m The two
radial lines
shown are
perpendicular
to the rotation
axis

s About a Known
XIS of Rotation

m Suppose we
look in from
the end to see
the situation.




ons About a Known
AXis of Rotation

m Looking in from the
end of the axis
vector, here’s what
we see.

The particle has
swung about u by
the angle ¢ as it
moved from P to P’

ns About a Known
IS of Rotation

m Let the
vector from
the origin to
the plane of
rotation of P
be called A
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s About a Known
AXxis of Rotation

m Vector A is
then:

m (Recall that
u is a unit
vector!)

ns About a Known
XIS of Rotation

m /t will help if we
establish a new
rotated coordinate
system at the tip
of vector A




s About a Known
AXis of Rotation

m Let’s slide u up to
the tip of A

m For clarity we’ll
simplify u’s
representation.

ns About a Known
XIS of Rotation

m Subftracting
vector r from
vector A gives
a centripetal
vector
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s About a Known
AXis of Rotation

m We can make it
into a free unit
vector s by dividing
that vector by its
magnitude:

ns About a Known
x1s of Rotation

m Taking the
cross product
of sand u
gives a third
unit vector m

SXu=m=—-—uxs
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s About a Known
AXis of Rotation

m Vectors s, u,
and m form a
right-hand

ns About a Known
x1s of Rotation

m Looking in
down the u
axis here’s
what we see
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ons About a Known
AXis of Rotation

ns About a Known
IS of Rotation

m Resolve A r into
two components:

m One radially
inward along s

m The other in the
tangential direc-
tion along m

Ar, s&m

Ar

15



Ar=Ars+ Arm
=p(l—-cos ¢)s+ psin ¢m
P, ¢)s+ psin ¢

=0

JJ Note: JJ

The radial component is
always centripetal!

t

= 1 - + ]
pws psin ¢ m
=0

A -

pm = p(—ux

pm=—-uxA+u xr

= 0 (since they have the same line of action )
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ons About a Known
XIS of Rotation

| Ar = Ar s +Arm
=p(l-cos ¢)s+ psin ¢ m
p{=cos 9)s+ pin ¢

=0

pm = p(—ux A l_9r)

pm=—-uxA+u xr
= 0 (since they have the same line of action )

ps=A-r
Ar=(1 —cos Q)[A —r]+sin ¢ [uxr]

= -cos ¢)[u(u-r)—r]+sin ¢[uxr]
r=r+Ar

digression...

Save this supersaturated thought
while we have a brief digression
to review some matrix algebra

and stuff
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ting Vectors

ectors can be
represented by a
column matrix:

m Vectors can also
be represented by
a square matrix:

out Dot and Cross
Products

here are two kinds of vector products
— Scalar or Dot Product
The result is a scalar

— Cross Product (also called the Vector Product
or the Outer Product)

The result is a vector

18



roducts

||B| cos(6)|

B
| |A| cos(0) | M

|A||B] cos(®)
A*B =B°*A
B The dot product of vectors A and B is written as A - B
and is a scalar quantity.

m /t is defined as the magnitude of A times the magnitude
of B times the cosine of the angle between them.

Dot Products

||B| cos(6)|

| |A| cos(0) | M

|A||B] cos(®)

m Notice that the commutative law is true for the

Dot Product:

19



‘Component Form

r Cross Products

|AxB| =|A||B]sin(6)

m The Cross Product of vectors A and B is a
vector C which is perpendicular to the plane
containing vectors A and B

m A right-handed screw turned from A towards B
would advance in the direction of vector C

20



m Notice that the commutative law is NOT
true for the Cross Product

AxB =-Bx A

g. of Cross Product

21



Cross Product in Determinant
Form

Abrief digression...

Now, where were we???
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lons About a Known

—cos Q)[A —r]+sin ¢ [uxr]
=(1-cos ¢)lu(a-r)—r] +sin ¢ [uxr]
r'=r+Ar

m Since (1 - cos ¢) crops up repeatedly it will
save lots of work to call this “versine (¢)”

m / would copyright the name except that
vers (¢) is how mathematicians have
always referred to (1 - cos ¢)

lons About a Known

=r +Ar

0 cos ¢ —sm(]bu2+sm¢u1 0

cos¢p 0 —sm(pu3+sm¢u2
0 cos ¢ 0 + +sznq§u3 —sin ¢ u,

r', r,
r',| = r,
r', vers g ul vers puu, verspuu, r,
+ [vers g u,u, vers gu3 verspu,u,
vers g uu, vers g uu, vers ¢ uj
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lons About a Known

vers pu? +cos ¢ vers guu, —sin ¢ u,ivers ¢ u,u, + sin ¢ u,
vers guu, +sin g u,i vers g us +cos ¢ ivers pu,u, —sin¢u,
vers ¢ usu, — sin ¢ u,ivers ¢ usu, + sin g u,i vers g ui + cos ¢

m We can call this matrix the “Finite Rotation Tensor

m /t is a matrix operator that converts a vector r into a vector
r’ when the origin is on the axis of rotation

otation About the,Z
AXis

u 'Suppose the axis of rotation is the + Z
axis

24



olation About thexZ

vers g ut +cos ¢ versguu, —sin ¢ u,vers g u,u, + sin ¢ u,
[R] = |vers guu, +sin g u,: verspul +cos¢ iverspu,u, —sindu,
vers ¢ usu; — Sin ¢ U,ivers ¢ usu, + sin g u,i vers ¢ u3 + cos ¢

[RZ] =| sin¢g cos¢ 0
1

0 0

cos¢p —sing 0 ]

Rotation By 90°
About the Z AXis

m Suppose the angle of
rotation is 90°

m Also, let the starting

point be located at

25



Example.. Rotation By 90°
About the Z Axis

m From the general expression:

verspu? +cos ¢ iverspuu, —sin¢ u3§vers ¢uu, +sin ¢ u,
[R] = | verspuu, +sin g u,i vers gul +cos¢ iverspu,u, —sindu,
vers ¢ usu, — sin ¢ U,ivers g usu, + sin g u,i vers g u3 + cos ¢

[Rz] =|sing cos¢ 0
0 0 1

7 cos ¢ —sin ¢ 0 ‘

Example. Rotation By 90°
About the Z Axis

cos90 =0
sin 90 =1
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position of Rotations

ITSUppOSG you have a rotation [R,,]
which is followed by a rotation [R,]

m How can we find a single rotation [R,5]
which is equivalent to this sequence?

jon of Rotations

Given: [R,,] followed by [R,5]
m Find: [R,5]
m Procedure:
ry=[R;,] r,
r;=[Rylr,
=[R.,.][R,,]r
JJ Note: S L 23][ 12] .

The order of the factors is important!
Spatial rotations don’t commute!
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tion of Rotations

m Suppose we have a 90° rotation about
the Z axis followed by a 90° rotation
about the Y axis:

0
1
0
0
0
-1

[R,]=[R,]

28



Single Rotation

m How can we find the
equivalent single
rotation this tensor
represents?

alent ' Single Rotation

1ave nine equations available to us

@ We can equate each element of this %
tensor to the corresponding term in the .
general finite rotation tensor

vers ¢ u? + cos ¢ Evers puu, —sin g u,vers u,u, + sin ¢ u,
[R] = | vers puu, +sin g uyi vers ul +cos ¢ ivers pu,u, —sindu,
vers ¢ Usu; — Sin ¢ uyivers g usu, + sin pu,i versdui + cos ¢
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Single Rotation

“u vectoris 1, so we have more
equations than are needed

vers ¢ u? + cos ¢ versq)ulu2 —singu, vers¢u U, + sin ¢ u,
[R] = [ vers g u,u, +sin ¢ u3 vers ¢ ui +cos ¢ vers $u,u, —sinpu,
vers ¢ usu; — Sin ¢ U,ivers ¢ usu, + sin g u,i vers g u3z + cos ¢

ent Single Rotation

( ok, for.example at the diagonal
| 5

—sin ¢ uyivers g u,u, + sin ¢ u,

i vers g ui +cos ¢ ive

vers ¢ usu; — sin ¢u2 vers ¢ usu; moug verspui + cos @

30



vers ¢ u? + cos ¢ versq)ulu —szn¢u3= 2
[R] = | vers ¢ u,u, Fsin ¢ u3 ,

versp w2 +cos¢p =0, m =1,2, 3

“Single Rotation

verso ul +cos¢ =0, m =1,2, 3
or
, _ —COS ¢

™ vers ¢ m =1,23

31



» Single Rotation

e axis u lies on the

32



ingle Rotation

m What is the equivalent
rotation angle ¢,;?

‘angle ¢,; look at off-diagonal $15= 27

ements such as (3, 2) and (2, 3): %

versgu? +cos ¢ iversgulu, —sin ¢ u3
[R] = | vers ¢ uu, +sin ¢ u,: 3 »

33



fent Single Rotation
ngle ¢,; look at off-diagonal b,5= 77

‘elements such as (3, 2) and (2, 3): %

(3. 2) vers g uu; —sin gu; =1
(2, 3) vers g u,u, + sin¢gu, =0
(3, 2) - (2, 3): 2singu, =1

Ingle Rotation Angle

; ¢,5 IS either 60° or 120° $,5= 72

3

34



Sifigle Rotation Angle

= ??

¢4
é,5 60° or 120°7 &?

CRIRAVAI 2 (1 —cos g)uu, =1
2§(1 —cos ¢) =1

l —cos ¢ =

m This is a Spherical
Motion!

m All the axes of
rotation are
concurrent

35



Equivalent Single Rotation

m Spherical
Motion

m Concurrent
axes of
rotation

Equivalent Single Rotation

m Spherical Motion

m Concurrent axes
of rotation

m This illustrates
the Pole
Triangle on the
Sphere

36



he Rotation Matrix

m Meaning of the columns of [R]:

vers ¢ u? + cos ¢ Evers puu, —sin g u,vers u,u, + sin ¢ u,
[R] = | vers puu, +sin g uyi vers ul +cos ¢ ivers pu,u, —sindu,
vers ¢ Usu; — Sin ¢ uyivers g usu, + sin pu,i versdui + cos ¢

of the Rotation Matrix

What is the meaning of the columns of [R]?

r' = [R]r

m Multiply [R] by the identity matrix

37



S of the Rotation Matrix

‘the Rotation Matrix

d1id;5:853
A3 :d3pidss

The i unit vector before and after rotation

38



e Rotation Matrix

e Rotation Matrix

= | 321822153
A3 :d3pidss

So V; (the first column of the rotation matrix) is also
a unit vector




e Rotation Matrix

d,idyyidys

djids,ids

Further, the first column of the rotation matrix is
simply the rotated i unit vector

e Rotation Matrix

m Similarly, the second and third columns
of the rotation matrix correspond to the
rotated j and k unit vectors

" [R] = I:V1 s Vs V3]

40



he Rotation Matrix

You can patrtition the rotation matrix into
three unit vectors corresponding to the
original base unit vectors:

of the Rotation Matrix

[R] = I:V1 s Vs V3]

m Also, since the column vectors V,, V,,
and V; correspond to the original set of
base unit vectors after rotation they
form an orthonormal right-handed triple

41



of the Rotation Matrix

[R] = I:V1 N N V3]

m Also, since the column vectors V,, V,,
and V; correspond to the original set of
base unit vectors after rotation they
form an orthonormal right-handed triple

eck for Rotation By
0° About the Z Axis

inspection:
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e Rotation Matrix

[R] = I:V1 N N V3]

mV,, V,, and V; form an orthonormal
right-handed triple:

'S Of the Rotation Matrix

he vector triple products of V, , V,,
and V; have the properties:

43



he Rotation Matrix

The dot and the cross can be
interchanged in these vector triple
product equations (moving the
parentheses, of course)

of the Rotation Matrix

Also, the determinant of [R] is unity:

d,..d,,ad
11123

Det [R]= a,,a,,a,,| =1
dz;ds,dss

44



e Rotation Matrix

i:jik
V,xV,; = A15i8y,83,
a13:d,3:d53

= i [ #221832 | d328, a1,y
dy3id33 d33id;3 dp3idy3

e Rotation Matrix

Vi,*V,xV; =1
= a,; (x component of V, xV;)
+ a,, (y component of V, x V)
+ a,, (z component of V,x V,)

CIRECIPESE
= Det [R] = ap1i8y5i53
a3,:83,833
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e Rotation Matrix:

Here’s the algorithm for finding the
inverse of a general matrix:

— Replace each element of the matrix by its
cofactor (the signed minor of the element)

— Transpose rows and columns (this yields
the adjoint of the matrix)

— Divide by the determinant of the matrix
(this yields the inverse of the matrix)

e Rotation Matrix:

Note: For a finite rotation matrix
— Each element is equal to its own cofactor

— The determinant of a rotation matrix is
equal to 1

46



of the Rotation Matrix:

For a finite rotation matrix
— Each element is equal to its cofactor

— The determinant of the rotation matrix is
equal to 1

m Thus:

inding the Inverse of a
tation Matrix:

47



ding the Inverse of a
otation Matrix:

d;,4d,, a31as3§
d3p833 || A21 823

a32a33 allal3E

Cofactor[R]: a,a, | a31a33§

PEER H IRy

(Replacing each element by its cofactor produces no
change since this is a direction cosine matrix)

ding the Inverse of a
otation Matrix:

dyp83; || 83285
dy3833 [[| A338 3|

Az, |ila;as |

T
Cofactor [R] = : :
33873 [[| 13833

a,, 45, a313‘115
a,,45, a323125

48



Inding the Inverse of a
Rotation Matrix:

This is the adjoint of
the rotation matrix.

(The transpose of a general cofactor matrix is called
the adjoint of the matrix.)

ding the Inverse of a
otation Matrix:

This is the adjoint of
the rotation matrix.

Dividing this by det[R] (which happens to be 1 in
this case!) gives the inverse. Let’s see if this is all
true.

49



~inding the Inverse of a
otation Matrix:

Compare the first row of Cofactor [R]T with the components of V, x Vj:
i jk
V., xVy =laaa;| =V,
ay38,38;;

ding the Inverse of a
Rotation Matrix:

so Cofactor [R]T =

50



ing the Inverse of a
olation Matrix:

dy3dy3ds;

soliition of Rotations:

m Suppose we are given a rotation [R]

m Can we resolve it into a series of two
successive rotations?

m How?
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ution of Rotations:

iven a rotation -R]

(-With a given u and ¢)

find rotations R 1]
(with awu, and ¢,)

and _Rz]
(with aw, and ¢,)

R| =[R,][R,]

olution of Rotations:

[R] = [R2 [Rl]
m What are the
unknowns?

m We have eight
scalar unknowns: Wy,» Uy, Uy s b,
u2x9 u2y ’ uZZ 9 ¢2
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n of Rotations:

[R] = [R,] [R,]

m Equating elements in the general
expression gives nine equations in
these eight unknowns.

Uy Uy s Uy, G

u2x9 u2y7 uZZ ’ ¢2

tion.of Rotations:

m We also have some additional
constraint equations because the
rotation axes are specified by unit
vectors:

ui +ul +us =1
X y V4
us + u%y+ uz =1

(Unit Vectors)
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n of Rotations:

ese two relationships reduce the
system from eight down to six
unknowns.

m (The third element of each unit vector is
determined once we know the other

two.)
2 2 2 -
uy +uy +up =1

us + u%y+ uz =1

(Unit Vectors)

tion.of Rotations:

m We also have three normalization
equations:
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n of Rotations:

m We also have three normalization
equations:

m (Each column of the rotation matrix is a
unit vector)

tion.of Rotations:

m /n addition we have three orthogonality
conditions:

m (the columns of the rotation matrix form
a right-handed ftriple)
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n of Rotations:

m Once all this is taken into account the
system is reduced to three independent
equations

m But we have six independent
unknowns!

What does it all mean??

tion.of Rotations:

m Once all this is taken into account the
system is reduced to three independent
equations

m But we have six independent
unknowns!

What does it all mean??

56



-of Rotations:

m /t means there are an infinite number of
ways we can resolve a rotation into a
sequence of two rotations!

.of Rotations:

For instance:

— We can rotate from the starting position to
anyplace else we like

Pick [R 1]
(with au, and ¢,)

— We can then rotate from there to the known
final position
Solve for [Rz]

(with au, and ¢,)

57



solttion of Rotations:

m Alternatively, you can prescribe some
other combination of the elements of
the unknowns

solution. of Rotations:

m You can arbitrarily pick three of these
Scalar quantities (subject to a few
obvious restrictions) and solve for the
others

) Obviously don’t pick
hat’s obvious?

tbigger than 1 for example

58



e Velocity Matrix

m Suppose ¢ is
time varying

e Velocity Matrix

59



But r is a constant!

the Velocity Matrix

. d R
r is a constant, so you only need m
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n of the Velocity Matrix

m For infinitesimal rotations we can make
small angle approximations in the
general rotation matrix:

1 of the Velocity Matrix

61



e Velocity Matrix

e Velocity Matrix

62



on of the Velocity Matrix

m A rotation plus a
co-linear
translation along
the rotational axis
is called a “Screw
Displacement”
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lacement About an
Is Through the Origin:

m for a screw motion
the sequence of
actions is
unimportant

m The rotation can
precede, follow, or
coincide with the
translation

placement About an
Is Through the Origin:

m Here, the patrticle
P starts at the end

64



lacement About an
Through the Origin:

m Here, the patrticle
P starts at the end

of r

m After rotation it
moves to P’
located by the
position vector r’

m After the
translation it
moves on to P”
located by the
position vector r”

65



lacement About an
Through the Origin:

m Since the rotation
and translation
are about the
same axes, the
order is
interchangeable!

cement About an
IS Through the Origin:

m Mathematically, if
the rotation takes
place before the
translation we
have:
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lacement About an
Through the Origin:

m The sequence of
operations is
shown by the fact
that the [R]
operates on r

cement About an
IS Through the Origin:

m [he rotation takes
place first even if
we write
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cement About an
Through the Origin:

m /f the rotation
takes place after
the translation we
have:

=[R]s+r

Jisplacement About an
Through the Origin:

m The sequence is
shown by the fact
that [R] operates on
the displaced r after
it has had s added to
it

68



lacement About an
IS Through the Origin:

m Notice we end up in the
same place since we
have done something
akin to forming a
parallelogram on the
surface of a cylinder

atial Displacements
xis Through the Origin

m Suppose we have
a pure rotation
followed by a pure
translation

69



atial Displacements
“Axis Through the Origin

m Since the rotation
and the translation
are not about the
same axes the
order is not
interchangeable

atial Displacements
¢igh the Origin, Rotation Followed by Translation

m The rotation is first
since [R] operates
on r and then s is

70



in

tial Displacements

Rotation Followed by Translation

m Here, rotation is
first since [R]
operates on r and
then s is added:

m Notice that
translation is a
“free” vector
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!
X

y

tial Displacements
h the Origin, Rotation Followed by Translation

=S, +a, F,+a,r +a;,r,
=Sy +Cl21ry+a22l’y+a23l”y
=S8, ¥ a3, 7+ Az, +as;r,
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[.opatial Displacements
h the Origin, Rotation Followed by Translation

Suppose we introduce a new four-dimensional
vector with no physical significance:

" —_
r', =r, +0r +0r +0r,

=r, +0r . +0r +0r,

n
rw
n
rx
n
I’y
n
r.

=S8, ¥ azr, Az ro+dassr,
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al Displacements

the Origin, Rotation Followed by Translation

Also, by definition, let:

Here, p, q, and t are simply scalars

spatial Displacements
¢igh the Origin, Rotation Followed by Translation

Then we can write:
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al Displacements:

where [B] is a 4 X 4 matrix

ial Displacements

'Org n, Rotation Followed by Translation

O 0 O
dipdipdgg
dypdyy dyg
dyqdjz, djg
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tial Displacements

00 0]

a;ad;,a,
Ay d,, dy;
a3 djz, dsg

tial Displacements

76



tial Displacements

in, Rotation Followed by Translation

tial Displacements

djad;,4a;;

dy1djrdns

dy)dj,dsy
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atial Displacements

e Origin, Rotation Followed by Translation

Keep in mind this restriction on what we
have done:
— U’s axis passes through the origin!

d3;a3,d33

atial Displacements

émOr/'gin, Rotation Followed by Translation

Keep in mind this restriction on what we
have done:
— U’s axis passes through the origin!

m Notice the translation is a “free” vector

d3;a3,d33
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ogeneous Coordinates

lTPreviously, we needed to use matrix
muiltiplication for rotations and matrix
addition for translations

us Coordinates

By introducing this new, fourth
dimension, we are now able to combine
translations and rotations into a single
matrix multiplication

d3;a3,d33
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us Coordinates

m Using an n+1 dimensional space this
way to represent an n-dimensional
problem is an example of use of
‘homogeneous coordinates”

a3 a3,d33

ous Coordinates

m /t allows us to treat both translations
and rotations in a consistent,
‘homogeneous” manner

d3;a3,d33
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e Origin, Rotation Followed by
Translation

m Suppose the
axis of rotation
does not pass
through the
origin.

m /t is offset from
the origin by
some vector g.

al Displacements

igin, Rotation Followed by
Translation

m Vector g goes
to any point
along the axis
of rotation.

m /tis not
unique!
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atial Displacements

m Again, the
translation
vector s is a free
vector.

m /t is not
associated with
any particular
line of action.

ial Displacements

ough the Origin, Rotation Followed by
Translation

m A particular
particle P starts
out at the end of

a position vector
r
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e Origin, Rotation Followed by
Translation

m P swings about
u through angle
.

m This brings it to
position P’
located by
vectorr’

al Displacements

igin, Rotation Followed by
Translation

m P’ then
translates by
vector s

m This brings it to
its ending point,
P” located at r”’
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tial Displacements

tirough the Origin, Rotation Followed by
Translation

m How can we
derive a matrix
expression for
this total
displacement?

tial Displacements

em'Origin, Rotation Followed by
Translation

m 7o begin, let’'s
temporarily shift
our coordinate
axes to the tip of g

m This will bring the
axis u through the
new origin




al Displacements

rigin, Rotation Followed by
Translation

W The axis now
passes through the
new origin

W This makes it easy
to rotate by angle
¢ about axis u

hrough the Origin, Rotation Followed by
Translation

m With the rotation
now done, we
can then
IEUNEICRULE
axes back to
where they
belong
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e Origin, Rotation Followed by
Translation

m Finally, we can
apply the
translation s
bringing P’ to P”.

al Displacements

igin, Rotation Followed by
Translation

m Shifting the
coordinate axes
to the tip of g is
mathematically
the same as
shifting the part
backwards by -g

86



tial Displacements

tirough the Origin, Rotation Followed by
Translation

m So here’s the overall
sequence:

. Translate by -g to bring the
axis through the origin

. Rotate about u by ¢
. Translate back by +g
. Translate by s

tial Displacements

e-b’rigin, Rotation Followed by
Translation

We can write out the steps this way:
1. Translate by -g to bring the axis through the

origin
r-g




al Displacements

“Fhirough the Origin, Rotation Followed by
Translation

We can write out the steps this way:
1. Translate by -g to bring the axis through the
origin
2. Rotate about u by ¢

R]{r - g

atial Displacements

rough the Origin, Rotation Followed by
Translation

We can write out the steps this way:

. Translate by -g to bring the axis through the
origin

. Rotate about u by ¢

. Translate back by +g

r' =[R]{r—g}+g

88



al Displacements

rigin, Rotation Followed by
Translation

We can write out the steps this way:

. Translate by -g to bring the axis through the
origin

. Rotate about u by ¢

. Translate back by +g

. Translate by s

r' =[R]{r—g}+g + S

hrough the Origin, Rotation Followed by
Translation

How can we put all this into homogeneous
coordinates?

r' =[R]{r—g}+g + S
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al Displacements

rigin, Rotation Followed by
Translation

Recall that before, with
the axis through the

origin, we had

dz1 A2 473

d3;a3,d33

hrough the Origin, Rotation Followed by
Translation

This was for a rotation
about the origin followed
by a translation

d3;a3,d33
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e Origin, Rotation Followed by
Translation

The general form was

— An identity submatrix

— A zero submatrix

— A translation submatrix
— A rotation submatrix

al Displacements

igin, Rotation Followed by
Translation

Back to the case of a rotation about an axis
not through the origin, followed by a
general translation

The vector equation we derived for this
was as follows:

r' =[R]{r—g}+g + S
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atial Displacements

he rigin, Rotation Followed by
Translation

We want to put this series of vector
calculations into a similar homogeneous
form

r' =[R]{r—g}+g + S

atial Displacements

h the rigin, Rotation Followed by
Translation

~ Start by expanding this out:

Rotational Equivalent
Submatrix Translation
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e brigin, Rotation Followed by
Translation

So, for a general rotation
followed by a general
translation:

of General Spatial
1S by 4X4 Matrices

-:r-r-Through the Origin, Rotation Followed by Translation
m Object:

— to combine into a single matrix a displacement [B.]
followed by a displacement [B,].

dz1 a2 473

d3;a3,d33

Equivalent Translation ~ Rotational Submatrix
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of General Spatial

of General Spatial
S by 4X4 Matrices

“Through the Origin, Rotation Followed by Translation

m After the second we have:
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We want to merge these into one
equivalent displacement so that:
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of General Spatial

of General Spatial
S by 4X4 Matrices

“Through the Origin, Rotation Followed by Translation

m Combining these we get:
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Resultant

| Rotation
Resultant _

Translation

In other Words, the equivalent
translation vector is:
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Suppose we have a

first screw

displacement along

the z axis

— The rotation angle is
90°

— The translation is 2
units

Displacements: Example

This is followed by a
second screw
displacement along
the y axis
— Again, the rotation is
90°
— The translation is again
2 units
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m What is the resultant

screw?

— Where is it located?

— What is its line of
action?

— What is the equivalent
single rotation angle?

— What is the equivalent
translation?

placements. Example
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iIsplacements.: Example

ements: Example
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iIsplacements.: Example

Equivalent s, ; Equivalent [R ;]

ements: Example
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‘ements: Example

Displacements: Example
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isplacements: Example
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placements: Example

‘So [B,5] becomes:

Displacements: Example

"What does this all mean?
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splacements: Example

0ok at the columns of [R5]:

ements: Example

Look at the columns of [R,5]:

i went to j

J went to k

kwenttoi \‘T 3 ‘
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us this represents a
rotation about a line along
the diagonal of a cube

i went to j
J went to k

k wentto i
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“Because of symmetry, the
angle of rotation ¢,5 must

be 120°
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ments: Example

This isn’t a screw motion!

How does he know?

Obviously this isn’t a screw
motion, since you see the
overall displacement is in
the x-y plane and not along
the u,; axis
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ow can we find the
equivalent resultant screw
for this case?

.Resultant Screw

“Displacement

ere’s the general idea:

— The rotation’s the rotation’s
the rotation. It won’t change.
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esultant Screw

Displaceme

Here’s the general idea:

— The rotation’s the rotation’s
the rotation. It won’t change.

— The axis of rotation’s the axis
of rotation’s the axis of
rotation. It won’t change
either, when considered as a
free vector!

Resultant Screw
‘Displaceme

m So what must have
changed?

m The location of the axis of
rotation must have shifted
away from the origin by
some vector g so as to twist
the s,; displacement vector
into alignment with the
rotation axis!
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esultant Screw
~Displaceme

Vector g can point to any

point on the resultant screw % /813 =7?
axis -4 1207
ﬂ-... k_‘_ : ‘w Vs

Us=|Ir

I'rs

L. Resultant Screw

m What does the screw
displacement we are
looking for do to its own
screw axis?
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Resultant Screw
Displaceme

m Under the screw
displacement, the screw
axis itself would simply twist
about its axis and shift
along its own line of action.

esultant Screw
Displaceme

So we are looking for the
location of a line in the rigid
body whose displacement
under [B5] is collinear with
itself!
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esultant Screw
Displaceme

Take any point on that
unknown screw axis and
callitg

Resultant Screw
Displaceme

y After the transformation
[B45], g will have shifted to
g’, also on the axis
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esultant Screw
Displaceme

After the transformation
[B45], g will have shifted to
g’, also on the axis

g =[Bg

Resultant Screw
Displaceme

y After the transformation
[B45], g will have shifted to
g’, also on the axis
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.Resultant Screw
Displaceme

This vector must
be in the
direction of the
SCrew axis, u;;
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esultant Screw
Displaceme

B So we can write three
equations in four
unknowns:

Resultant Screw
Displaceme

ambda, here, is a scalar
“stretch” factor that brings
S 43 to the unit length of the
screw axis
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esultant Screw
Displaceme

unknowns and three
equations, we can choose
g, = 0 arbitrarily.

m Then the first two equations
gives us '
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esultant Screw
Displacement
m So the equivalent screw displacement then is

P13 = 12Q°/’

‘Q?WS

Pesign of a Screw
1ism*for Solar Panel ﬂ:

Deployment
m A five foot long by five foot

diameter satellite has four
solar panels stowed flat
along four flattened sides for

launch.

W /n orbit, these panels are to
be deployed at a 40° angle
fo the axis of the satellite as
shown.
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esign of a Screw
for Solar Panel ﬂ:
Deployment

m The active surface of the
panels is shown in gray.

m The back side of each panel
IS shown in red.

Stowed
Panel

Same
Panel
Deployed

Pesign of a Screw
nismfor Solar Panel ﬂ:

Deployment
m Each panel is 24” by 60°.

Same
Panel
Deployed

Stowed
Panel

119



esign of a Screw
for Solar Panel ﬂ:
Deployment

The basic diameter of
the satellite is 60”.

m /t has been flattened on
the four sides for
mounting the panels.

esign of a Screw
1'for Solar Panel ﬂ:
Deployment

i Before deployment, the
back surfaces of
opposite panels are 52”

apart as shown:
Stowed
Panels
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esign of a Screw
nism*for Solar Panel ﬂ:

Deployment

After deployment, the
center line of a typical
panel is to be located
41” from the center line
of the satellite.

m This gives 3” clearance
from the flattened side
of the satellite.

bLesign of a Screw
nism*for Solar Panel ﬂ:
Deployment

B
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esign of a Screw
for Solar Panel ﬂ:
Deployment

m 7ask: Design a constant
pitch screw mechanism to
deploy a panel.

m Determine if part of the
panel will interfere with the
satellite body during this
motion.

m /f so, determine the
interfering region and
remove it.

Pesign of a Screw
nismfor Solar Panel ﬂ:
Deployment

Hint:
— Choose a convenient XYZ
coordinate system.

— Determine a succession of
elementary displacements that will
produce the desired motion.

— Write matrices for these

— Combine them to find the resultant
screw

— Draw up the final mechanism
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nt Screws

nt Screws

n Instant Screw for
a motion is an axis
about which the
object is
instantaneously
rotating with an
angular velocity w

m At the same time, it
is advancing along
the same axis with
a linear velocity $
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nt Screws

The linear and
angular
velocities can
be related to
one another by
the lead “1” of
the screw.

mV.=lou

Stant Screws

B For a finite
displacement we
have:
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This is for finite displacements!
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V s

Average —
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n of Instant Screw
1S From Given Data

lpGiven an angular
velocity specified by an
axis vector u and by @

m And given a
translational velocity
specified by a vector s
(which may or may not
lie parallel to u)

 of Instant Screw
xis From Given Data

Find the location of the
line of action of the
equivalent screw axis
such that the
corresponding
translational velocity WILL
lie along the axis u

m Also find the lead of the
screw sothatV,=1lwu
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op of Instant Screw
xIs From Given Data
m Let g be the unknown
vector which locates
the screw axis relative

to our chosen
coordinate system.

pn of Instant Screw
xis From Given Data

m How can we find g ?

m We'll start by picking
some more convenient
coordinates in which to
work.
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or Determination of
Axis From Given
Data

Step 1: Choose a coordinate
system (or transform the
coordinate system) so that the
given axis vector is along the z
axis. (i.e., u = k)

Also choose the coordinates
so that the given velocity
vector lies in the x—z plane

or Determination of
Axis From Given

. Data
We are looking for the
location of the screw axis
relative to our chosen
coordinate system.

m Let this be given by the
unknown vector g.

m g specifies the position of
a point P on the screw
axis.
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for Determination of
Axis From Given
Data

Since any point on the
axis can be used to locate
the instant screw choose
the point where the axis
cuts the x—y plane by
letting g, = 0.

m Thus, g=g9,i+g,j

for Determination of
v-Axis From Given

Data
What is the velocity of the

point P on the screw axis?

The lead of the screw!

ve=lou
=S +tw xg
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or Determination. of
ScrewAxis From Given

Data
Velocity of point P on the

screw axis:

ifor Determination_of
w-Axis From Given
Data

In this case, because of
our choice of coordinates:
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for Determination of
Screw-Axis From Given

Screw-Axis From Given
Data
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for Determination of
Axis From Given
Data

This gives us three
equations to work with:

for Determination of
screw-Axis From Given
Data
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for Determination of
Axis From Given
Data

m Thus, the solution
IS as shown:
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or Determination of
rew-Axis From Given

m We can see from
the results that

xfor Determination. of
crew-Axis From Given

m Also, we see
that:

|u||s‘|sin6
g§= Q)
_u xs

W
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Procedure for Determination of
Instant:Screw-Axis From Given

m These two results
are valid for any
coordinate system!

Instant Screw Axis From Given
Data

m /n general:
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Note: The
velocity
along the
screw axis is
independent
of w except
through the
lead of the
screw.

Axis From Given

-Lransformation for

otation About the Origin:

m Suppose we
are given the
Xyz starting
coordinate
system

shown in
green.
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.Lransformation for
Rotation About the Origin:

m We are also
given the
rotation axis
vector u and
angle ¢

m Vector u
passes
through the
origin.

ransformation for
€ Rotation About the Origin:

m We wish to
rotate the

coordinates
by this u, ¢
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.Lransformation for
Rotation About the Origin:

m This will
bring the
coordinates
to the
position
shown.

m /n the
original
coordinate
system, a
point P has
components
as shown:
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»Transformation for
e Rotation About the Origin:

m /n the new
coordinate
system, it
has the
components
r,, r’y, and

m We wish to
determine a
coordinate
transformation
matrix [T] that will
leave the point P
in its original
position but rotate
the coordinate
system.
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Coordinale..Lransformation for
Pure Rotation About the Origin:

m So, we want
to find a [T]
such that

Coordinate.Lransformation for
Pure Rotation About the Origin:

m Notice that
rotating the
coordinates
by +¢is
essentially
the same as
rotating the
point P by -¢
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ransformation for
e Rotation About the Origin:

m Thus,

r rotated by (u, — @) =r'
r' rotated by (u, +¢@) =r

m So:

r rotated by (u, — ) =r'
r' rotated by (u, +¢@) =r

[R]
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) nsformation for
ation About the Origin:

m /n other words:
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ransformation for
About the Origin:

Lransformation for

vers g u? +cos ¢ vers ¢ uu +singu, versg uu,—sindu,
versg uu —sinpu, vers¢ u§ +cos¢ verspuu, +sindu,
vers guu, +sinpu, versp uu,—sinpu,_ verspu; +cos ¢
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m We are given the XYZ
starting coordinate
system shown in green.

jm Also given is the
rotation axis vector u
(through the origin) and
the angle ¢

m We are also given a
displacement vector s

ransformation.for
About the Origin
"Followed by a Translation

m After the rotation the
coordinate system
becomes X' Y ' Z"

jm After the subsequent
translation it becomes
XY Z
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ransformation.for
ire.Rotation About the Origin
Followed by a Translation

m Given the point P in the
original system located
by r we want to find the
components of r’

m Here, [T] is the usual
coordinate transformation
matrix for a pure rotation
about the origin.
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ransformation.for
ire.Rotation About the Origin
Followed by a Translation

m Now translate the
starred coordinate
system by s”

MW This is the same as
translating P by -s”
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Transformation,for
ation-About the Origin
ollowed by a Translation

m /n 4 X 4 matrix form
(Gee, it sounds like an
SUV) we have:

ro= [A]r

where [A] is a four by
four matrix.

149



Transformation.for

Column Submatrix

Transformation.for
~About the Origin
M by a Translation

[A]
m [A] represents a rotation of the coordinate
system by T about its origin followed by a
translation by s specified in the original system!
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. [ransformationyfor
About the Origin
Followed by a Translation

[A]
m How can we invert this 4X4 transformation
matrix [A] that we just derived?

of 4X4 Matrices

A] represents a
rotation of the
coordinate system by
T about its origin
followed by a
translation by s
specified in the
original system.
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of 4X4 Matrices

A typical point P is
defined in the current
coordinate system
X"y’ z’ by position
vector r’.

of 4X4 Matrices

“To invert this matrix [A]
physically we do the
following:

— Shift back by s” defined
in the transformed
system
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f 4X4 Matrices

o invert this matrix [A]
physically we do the
following:

— Shift back by s” defined
in the transformed
system (this gives us r*
in the x" y* z* system.)

f 4X4 Matrices

o invert this matrix [A]
physically we do the
following:

— Shift back by s” defined
in the transformed
system (this gives us r*
in the x" y* z* system.)

— Rotate back to obtain
the original r in the x y
z system.
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4X4 Matrices

athematically, here’s
what happens:

— Shift back by s” defined
in the transformed
system (this gives us r*
in the x" y* z* system.)

m /n other words,

of 4X4 Matrices
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rsion of 4X4 Matrices
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sion of 4X4 Matrices

r the special case of a screw motion:

[T]s =[R]s =S

if 4X4 Matrices

Note: The product of 4X4 screw
matrices is not necessatrily a screw
matrix!
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m We are given the XYZ
starting coordinate system
shown in green.

Displacement vector s is
also given, defined in the
original coordinate system.
In addition we have the
given rotation u, ¢ which will
take place about the
displaced origin.

ransformation.for
atiorn-Followed by a
Rotation About the New Origin

m After translation by
vector s we are brought
to the coordinate
system x* y* z* as
shown:
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m We then rotate the starred
coordinate system to the x’
y’ z’ final system by rotating
about the new origin o
(which = o’, the final origin).

m The rotation takes place
about u (through the new
origin) and by the angle ¢.

m We want to find the
components of r’ in the
translated and rotated
coordinate system,
knowing the original r
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m Step 1: Translate xyz by
vector s to x* y* z*.

m (This is accomplished
by translating P by -s)

&

yr =r —S§

ransformation.for

_ ation-Followed by a
ation About the New Origin

m Step 2: Rotate x” y" z" by [T]
matrix:

m This is as before, since the
rotation is about the new
origin.
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B Thus, this matrix describes either

— a coordinate transformation by rotation followed by
translation defined in the original system

— or a coordinate transformation produced by translating
by s defined in the original system and followed by a
rotation about the new origin (in either the * or the *
system).
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ate. Transformation for
lowed by a Rotation

la

About the Original Origin

m By inspection, we see
that this motion is
equivalent to a
translation from o to
o’ followed by a
rotation about u
through the new
origin o’ by angle ¢

Transformation for
lowed by a Rotation

the QOriginal Origin

m By inspection, we see
that this motion is
equivalent to a
translation from o to
o’ followed by a
rotation about u
through the new
origin o’ by angle ¢
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ate. Transformation for
lowed by a Rotation

la

About the Original Origin

m By inspection, we see
that this motion is
equivalent to a
translation from o to
o’ followed by a
rotation about u
through the new
origin o’ by angle ¢

Transformation for
lowed by a Rotation

the Original Origin

m Translation from o to 0’
iIs accomplished by
[R]s or [T]'s

m So franslation of the
coordinates by [T]'s
has the same effect as
translating P by -[T]'s
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te. Transformation for
S owed by a Rotation

About the Original Origin

m So in the ** coordinate
system point P is given
by

r-t o= —[T]_ls +r

e. Transformation for
owed by a Rotation
About the Original Origin

m Rotating the
coordinate system
about the new origin o
iIs accomplished by
operating on the r” by

[T]

J
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Coordinate. Transformation for
Translation Followed by a Rotation
About the Original Origin

m That means that

Coorainate. Transformation for
Franslation Followed by a Rotation
About the Original Origin
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te. Transformation for
S owed by a Rotation

About the Original Origin

m Here, both u and s are
defined in the xyz
coordinate system.
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Coordinate.lransformation by a
Screw-Motion

m /f we consider this motion
as a translation followed
by a rotation we get

Coordinate..lransformation by a
Screw-Motion

m /f we think of it as a
rotation followed by a
translation we get
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ransformation by a

m Putting this in 4X4 matrix
form gives:

ansformation by a
Screw-Motion

m But remember that s is
along the axis of rotation
and is invariant under this
rotation!

m This means we can again
write this as:
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itogether: Armatron
Robot Example

Suppose we wish to
develop a kinematic
computer model of the
Armatron toy robot shown
here.

m This is an example of an
“Open Loop” spatial
mechanism.

m /t has how many degrees
of freedom?

together: Armatron
Robot Example

Werist Pitch
Shoulder Pitch Wrist

Shoulder Yaw
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together: Armatron
Robot Example

"It appears to have six
degrees of freedom as
shown:

It' appears to have six
degrees of freedom as
shown:

m /t has a
— Shoulder yaw joint
— Shoulder pitch joint
— Elbow joint
— Whrist pitch joint
— Wrist roll joint
— Hand grasp joint
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together: Armatron
Robot Example

" With the exception of the
hand joint all of these are
turning joints.

m Several of the joints (such
as the two shoulder joints)
have intersecting axes so
as to simplify the
structure.

How can we model
this on the computer?

170



together: Armatron
Robot Example

"First, let’s establish a
convenient system of
coordinate systems.

We’ll attach at least
one coordinate system
to each part.

In fact, let’s sprinkle in
coordinate systems
whenever it seems it
might make life
simpler!
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{fogether: Armatron
Robot Example

For instance, we
probably want to be
able to describe where
objects are in terms of
a convenient world
coordinate system
fixed in the robot’s
base.

together: Armatron
Robot Example

\
But it would be a lot easier Shoulder K‘.

to describe the pitch of the Yaw

shoulder joint in terms of a
coordinate system like the
blue system shown here.

The blue system’s z axis
is always vertical, aligned
with the shoulder’s yaw
jJoint, but the x axis always
points along the
shoulder’s pitch joint.

Yaw
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he blue system’s Angle
position relative to the (Free paramet
world system is
completely specified by
the shoulder yaw angle
variable and the offset
along the z axis which is a COHStaH{

constant. ‘Offset

together: Armatron
“Robot Example

imilarly, it is easy to Shoulder K‘\.
describe the geometry of Yaw
the shoulder object itself
in terms of a coordinate
sy.?tem that is fixed in the 7] houlder
object, such as this red Pitch
system.

It is easy to describe
where that system is with
respect to the blue yaw
system if we line up their x
axes and their origins.

Yaw
system
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itogether: Armatron
Robot Example

\
Then the shoulder pitch Shoulder K'.

; Yaw j
angle is all we need to Yaw

know in order to figure out
system

where the shoulder is with j‘
respect to the blue 7] houlder
system. Ii Pitch

together: Armatron
Robot Example

Let’s attach two
coordinate systems to
each turning joint!

Good grief!
That’s a lot of
coordinate systems!
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together: Armatron
Robot Example

"It is a lot of coordinate
systems but it will
actually make our life
easier!

We will cleverly pick
our coordinate
systems so they line
up with joint axes.

Within a single rigid
link, a constant 4X4
transformation matrix
can bring us from one
coordinate system on
the link to the next.
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together: Armatron
Robot Example

"As you go across a
Joint, an easily written
4X4 transformation
matrix (which is a
function of the joint
variable) can bring us
from the coordinate
system on one side of
the joint to the one on
the other side.

ou’ll want to have a
convenient “World”
coordinate system in
which to describe the
locations of parts.

m You’'ll also want to
know where parts are
in relation to the hand.
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together: Armatron
Robot Example

ou’ll want to be able
to work back and forth
between the “World”
coordinate system and
the hand coordinate
system.

his is just a matter of
multiplying together
strings of 4X4
matrices.

Concatenate away.

Just be sure you know
whether to premultiply
or to postmultiply!
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It all.together: Armatron
Robot Example

You'll want to know
how things move
around when you
twiddle the various
free parameters!

m You’'ll want to know
UECICRUCRZC U
parts of the various
links are to make sure
that they don’t collide!

We want to be sure we

distinguish between

situations in which

— we merely express the
same position of an
object in a different
coordinate system

— and in which the object
has moved within the
same coordinate system!
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Putting It all.together: Armatron
Robot Example

Putting it.all.together: Armatron
Robot Example

S
ys”
(psipitch

}\—"rxs X
e
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Putting It all.together: Armatron
Robot Example

Putting it.all.together: Armatron
Robot Example
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Putting It all.together: Armatron
Robot Example

@

cPW _pitch

Putting it.all.together: Armatron
Robot Example
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